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Abstract: 

In this paper, the hydro magnetic stability of stratified shear flows in sea straits of arbitrary cross section has 

been discussed. Some results related to stability or instability have been obtained for oscillatory and non-

oscillatory modes.     

1 Introduction: 

The stability of homogeneous shear flows and stratified shear flows of an inviscid fluid to infinitesimal 

disturbances has been extensively studied. Drazin & Reid (1981), Yih (1981), Kochar & Jain (1979), 

Banerjee, et al. (1988, 1994), Padmini & Subbiah (1993) and Schmid & Henningson (2001) are few 

names who worked in this direction. These studied are restricted to rectangular cross sections. However sea 

straits have rarely rectangular cross sections. For example, the Bab of Mandab has a deep central trough 

bounded by shallow flanges. Pratt et al.(2000) derived an extended version of Taylor-Goldstein equation for 

non-rectangular cross section. Deng et al. (2003) developed a more general theory for transversely uniform, 

time dependent, stratified flow in a channel of arbitrary cross section. For the extended Taylor-Goldstein 

problem, they showed that the familiar results for Taylor-Goldstein problem are unaffected by the geometry 

of cross section. Hari Kishan & Neelu Chaudhary (2006) discussed the hydro magnetic stability of 

stratified shear flows. Subbiah & Ganesh (2007) discussed the stability of homogeneous shear flows in sea 

straits of arbitrary cross sections. Naresh Kumar, Hari Kishan and Ruchi Goel (2011) discussed the hydro 

magnetic stability of stratified shear flows in presence of cross flow.  

In this paper, the hydro magnetic stability of stratified shear flows in sea straits of arbitrary cross section has 

been discussed. The fluid flow considered here is shown in the following figures: 
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2 The Governing Stability Equation: 

Let the waves be linearly propagating in a stratified background flow with velocity U(y), magnetic field H 

applied in x-direction and density  y0 . The channel is assumed in x-direction and the bottom elevation 

 zh  has a single minimum with respect to cross channel coordinate z. The width of the channel at any 

elevation y is denoted by  yb . If there are several minima of  zh then  yb  represent the sum of widths of 

individual topographic troughs. Let ρ, u,  
zyx hhh ,, and p denote small perturbations from the density, x 

velocity, component of perturbations in magnetic field and hydrostatic pressure of the background flow, and 

let w and v denote the associated lateral and vertical velocity components. Employing the Bossiness 

approximation, the linearized, in viscid, hydrostatic equations of motion describing these fields are given by 
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We have to study the waves for which  
zyx hhh ,, , ρ, p, u, v and w are uniform in y, implying that the 

isopycnal surfaces rise and fall uniformly across the channel. Such solutions are dynamically consistent only 

in the limit of long wave length compared to channel width. Integrating (5) across the channel at any z and 

applying the conditions w = (dh/dy) at the two side walls leads to 
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Eliminating all variables in favors of v and neglecting the derivatives of  y0  except the term containing  g 

leads to 
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where U is the basic velocity in the x-direction which is function of vertical coordinate y, c is the complex 

wave velocity    ctxikeyv   is the vertical velocity of the disturbance, k is the wave number,   bT log ,  yb

is the width function of the channel 𝑆 =
𝜇𝑒𝐻

4𝜋
 is the magnetic parameter and 



 g
N


2 . Here primes denote 

the differentiations with respect to y. 

The boundary conditions are given by    Dvv  00 ,    …(22) 

Where y=0 denotes the elevation of the deepest point in the channel and y=D denotes the upper surface 

elevation.  

The non-dimensional form of equation (21) can be written as  
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For the case of weak applied magnetic field, the term 𝑆𝑣"can be neglected in comparison to the term 𝑆𝑘2𝑣. 

Therefore for the weak applied magnetic field the equation (23) reduces to  
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The associated boundary conditions are 

    100 vv  .        …(25)  

3 Stability Analyses:  

Multiplying equation (24) by v , the complex conjugate of v, integrating the resulting equation over the flow 

domain and using the boundary conditions (25), we get  
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The real and imaginary parts of (26) are given by 

         
 




























 dyv

cU

cUUT

cU

cUU

cU

ccUSkN
dyvkv rrir 2

224

2222
222

 



International Journal Of Engineering Research & Management Technology ISSN: 2348-4039 

           Email: editor@ijermt.org                                                                                 www.ijermt.org  
   

Copyright@ijermt.org Page 173 
 

         

         July- 2014   Volume 1, Issue-4 
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Inequality (27) can be written as 
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Using the transformation  FcUv  in the equation (24), we get 
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The corresponding boundary conditions are 
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Multiplying equation (30) by F , the complex conjugate of F, integrating the resulting equation over the flow 
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The corresponding boundary conditions are 

   100 GG  .        …(36) 

Multiplying equation (35) by G , the complex conjugate of G, integrating the resulting equation over the 

flow domain and using the boundary conditions (36), we get 
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Separating the real and imaginary parts of expression (37), we get 
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From expression (29), we see that if 0T , 0rc and 0 UUT  everywhere in the flow domain then for 

the existence of inequality (29) ic has to be positive. Thus we have the following theorem: 

Theorem 1: If 0T and 0 UUT  everywhere in the flow domain then the possible non-oscillatory 

modes are unstable modes. 

From expression (29), we see that if 0
2

1 
k

T
 and 02  UTUUUN  everywhere in the flow domain 

then rc  cannot be zero. Thus we have the following theorem: 

Theorem 2: If 0
2

1 
k

T
 and 02  UTUUUN  everywhere in the flow domain then only oscillatory 

modes exist. 

From inequality (34) we see that that if 0T everywhere in the flow domain and 0rc  then for the 

existence of this inequality ic  has to be negative. Thus we have the following theorem: 
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Theorem 3: If 0T everywhere in the flow domain then the possible non-oscillatory modes are stable 

modes. 

From inequality (34) we see that for non-oscillatory modes 
kU

T
ci

2
  at least at one point in the flow 

domain. Thus we have the following theorem:  

Theorem 4: For non-oscillatory modes the growth rate of unstable modes is given by 
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N  and 0T everywhere in the flow domain then only stable modes 

exist. Thus the conditions mentioned in the above theorem are the sufficient condition for stability.  

 

4 Concluding Remarks:  

In this paper, the hydro magnetic stability of stratified shear flows in sea straits of arbitrary cross section has 

been discussed. Some results related to stability or instability has been obtained for oscillatory and non-

oscillatory modes.     
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